

Einladung zum 22. Workshop

MODERNE KLINISCHE ERNÄHRUNG

Proteine im Fokus

Proteine im Fokus

Der Patient auf der Intensivstation

PD Dr.med. Claudia Heidegger Service des Soins Intensifs Genève

Inselspital Bern, 19. Juni 2019

Nutrition support in the ICU

- Detection + Correction + Prevention of protein calorie malnutrition
- Less negative nitrogen balance
- > Optimizing metabolism in the crit. ill
- > Reducing morbidity & rehabilitation

Malnutrition & poor outcome in critically ill patients

Malnutrition 20-40%

- ➤ Incidence of complications↑
- ➤ Infections & MOF ↑
- ➤ Time on MV ↑
- ➤ Mortality ↑
- ▶ ICU & hospital LOS ↑
- ▶ Costs ↑ ↑ ↑

Kyle et al., Clin Nutr 2006; 25:727-35 Martin et al., Can Med Ass J 2004; 170:197-204 Morgensen et al., Crit Care Med 2015;43:2605-15

Critical illness

disease requiring treatment in ICU

Catabolic critical illness:

life-threatening condition created by overwhelming infection (sepsis), trauma, or other kinds of severe tissue injury.

- systemic inflammatory response to major injury
- > coordinated cytokine-, hormone- and nervous system-mediated phenomenon
- alters temperature regulation and energy expenditure
- invokes neuroendocrine and hematologic responses
- changes the synthesis and disposition of certain proteins in the body
- protein-catabolic response
- stimulates muscle protein catabolism +++

Metabolic response to stress

The role of nutrition in critical illness?

Systemic inflammation

- anorexic effect -> no food intake
- increased muscle protein catabolism
- increased body protein loss
- increased energy expenditure.

Consequences:

- => severe muscle atrophy
- => adipose tissue stores ↓

Protein a crucial macronutrient in catabolic critical illness

Only one protein store in the body => skeletal muscle

Rapid & severe muscle atrophy in catabolic critical illness even in healthy young adults with initial normal muscle mass.

Generalized muscle atrophy at ICU admission in the critically ill (including obese)

- old age, disuse muscle atrophy
- pre-existing protein-energy malnutrition
- more vulnerable to the critical illness

Catabolic critical illness protein requirements

Protein = essential nutrient

Protein turnover

Proteolysis

Fat

Endogenous amino acid catabolism ↓
if dietary protein deprivation
but: not below a protein minimum or
obligatory nitrogen (N) excretion rate
Adaptive regulation by incorporation of
exogenous amino acids into body protein

Energy & protein requirements during critical illness

Energy-protein requirements depend on disease state & nutritional status

- Energy & protein provision to prevent body wasting in critical clinical conditions:
 - critical illness
 - severe malnutrition
 - body composition (e.g. obesity)
- Re-gain of muscle mass & energy stores during stabilized convalescent period

3 different phases in critical illness

Energy from endogenous & exogenous substrates in the critically ill patient

Acute Phase (72 -96h): utilisation of endogenous substrates (endogenous lipolysis & proteolysis)

→ Risk of "overfeeding"

Ockenga J. et al., Aktuel Ernährungsmed 2012; 37: 22-27

Overfeeding as well as underfeeding are deleterious

Nutrition support in the ICU

What is the optimal amount of protein for the critically ill patient ???

Energy & protein requirements for the critically ill

- Calorie & protein assessment is often inaccurate in the critically ill
- The right amount & the right composition of nutritional support for individual needs of the critically is a difficult art

How much protein for the critically ill?

Society of Critical Care Medicine & American Society for Parenteral and Enteral Nutrition 1.2-2.0 g protein/kg/d

European Society for Clinical Nutrition and Metabolism 1.3 g/kg protein equivalent/d

DGEM Guideline

1.0 to 1.2 g/kg protein or amino acids/d

International Guidelines – Protein Recommendations

Tabelle 1. Übersicht über die Proteinempfehlungen für nicht adipöse Patienten in den einzelnen Leitlinien **AS-Dosis** FOLLOW THE GUIDELINES Proteindosis (g/kg KG) (g/kg KG) am Ende der Steigerung Einschränkung Start Akutphase generell **ASPEN** 1,2 -2,0 2016 nein n.a. 2018 **ESPEN** 1,3 +? ja n.a. 2018 +0,2 **DGEM** 0,75 1,0 ja **DGEM** bei nicht septischen 2018 <0,8 ≥1,2 $\pm 0,0$ ja (Minderhei-**Patienten** tenvotum) KG = aktuelles Körpergewicht, AS = Aminosäuren

Contents lists available at ScienceDirect

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

ESPEN Guideline

ESPEN guideline on clinical nutrition in the intensive care unit

Pierre Singer ^{a, *}, Annika Reintam Blaser ^{b, c}, Mette M. Berger ^d, Waleed Alhazzani ^e, Philip C. Calder ^f, Michael P. Casaer ^g, Michael Hiesmayr ^h, Konstantin Mayer ⁱ, Juan Carlos Montejo ^j, Claude Pichard ^k, Jean-Charles Preiser ^l, Arthur R.H. van Zanten ^m, Simon Oczkowski ^e, Wojciech Szczeklik ⁿ, Stephan C. Bischoff ^o

Summary: Clinical questions (25) with recommendations (57) & 358 ref.

- Patients at risk
- How to assess nutritional status of an ICU patient
- How to define the amount of energy to provide
- When to start & how to progress in the administration of adequate nutrition support
- The route to choose
- Special conditions of ICU patients: sepsis, polytrauma, abd. surgery, obesity

Amount & nature of carbohydrates, fat and protein - glutamine and omega-3 FA High protein intake vs low protein intake? Improved outcome: mortality/infections?

How should you define protein targets?

In adult critically ill patients, does high protein intake compared to low protein intake improve outcome (\downarrow mortality, \downarrow infections)?

Recommendation	Grade
During critical illness, 1.3 g/kg protein equivalents per day progressively -> benefits from observational studies but RCTs less conclusive -> Optimal timing is unclear! - only retrospective studies URGENT NEED of well conducted RCTs!	0 91%
 Statement 3 Physical activity may improve the beneficial effects of nutritional therapy -> preventing anabolic resistance -> ↓ morbidity & improving the level of activity 	Consensus 82% agreement

Hypothesis:

Optimal protein targets change over time in the ICU & high protein intake is only beneficial if not associated with overfeeding.

Highglights of Changes

Assessment of EE & Caloric Intake

- Strong recommendation for indirect calorimetry (IC)
- Isocaloric nutrition when IC measurements
- Avoidance of use of predictive equations
- Hypocaloric nutrition (<70%) if use of predictive equations</p>
- Avoidance of early full EN & PN during first 3 ICU days
- ➤ After day 3: ↑ caloric delivery up to 80-100% of measured EE

Parenteral Nutrition

- Delayed start of progressive PN on day 3-7 (except in severely malnourished)
- No PN until all strategies to maximize EN tolerance attempted

Protein Intake:

- > 1.3 g/kg/d for all ICU patients
- No parenteral GLN in unstable/complex ICU patients (liver & renal failure)

Evidences from Clinical Studies

Optimal Protein and Energy Nutrition decreases mortality in mechanically ventilated, critically ill patients: A Prospective Observational Cohort Study

Table 3.	Relationship Between	Nutrition Therapy and	d Intensive Care	Unit, 28-Day, and	Hospital Mortality ^a
----------	----------------------	-----------------------	------------------	-------------------	---------------------------------

Model 0 ^b
Intensive care unit
28 d
Hospital
Model 1 ^c
Intensive care unit
28 d
Hospital
Model 2 ^d
Intensive care unit
28 d
Hospital

Protein and Energy Target	Energy Target
$0.91 \ (0.64-1.31), P = .626$	$1.03 \ (0.86-1.25), P = .733$
0.59 (0.40-0.88), P = .010	0.90 (0.74-1.09), P = .291
0.76 (0.58-0.99), P = .041	$0.93 \ (0.81-1.08), P = .339$
0.79 (0.54-1.17), P = .242	0.99 (0.81-1.20), P = .886
0.51 (0.33-0.78), P = .002	$0.84 \ (0.68-1.03), P = .085$
0.70 (0.53-0.94), P = .017	0.91 (0.79-1.06), P = .233
0.72 (0.48-1.09), P = .116	0.98 (0.80-1.19), P = .834
0.40 (0.26-0.64), P < .001	0.79 (0.64-0.97), P = .024
0.62 (0.46-0.84), P = .002	0.89 (0.77-1.04), P = .137

- 886 consecutive patients (2004-10)
- Nutrition guided by indirect calorimetry: >1.2 g protein /kg
- Cumulative intakes during mechanical ventilation
 - => Significant decrease in 28d mortality !!!

Optimisation of energy provision with supplemental parenteral nutrition in critically ill patients: a randomised controlled clinical trial

Claudia Paula Heidegger, Mette M Berger, Séverine Graf, Walter Zingg, Patrice Darmon, Michael C Costanza, Ronan Thibault, Claude Pichard

Early EN (24 h)

+

SPN from day 4 to 8 after ICU admission

for optimisation of the protein- energy target by PN when EN is insufficient after day 3 <u>adjusted by IC measurements</u> improves clinical outcome in critically ill patients!

- **Nosocomial infections** ψ (22%)
- ➤ Antibiotic use
 ✓ (2 days)
- Mechanical ventilation ↓ (1day)

Mean protein delivery during intervention (Day 4 to Day 8)

Intention—to-treat analysis (n=305)

Parameter	SPN (n=153)	EN (n=152)	p - value	
Protein delivery (g/kg/IBW/day)	1.2 ± 0.2	0.8 ± 0.3	< 0.0001	

*Mean \pm SD, Student t-test

ONLINE FIRST

Early Parenteral Nutrition in Critically III Patients With Short-term Relative Contraindications to Early Enteral Nutrition A Randomized Controlled Trial

> 1.372 Australian patients with a temporary contraindication to EN

Patients randomized within 24 hours of ICU admission to receive either standard care or early PN

Primary endpoint: 60-day mortality

JAMA The Early PN Trial in critically ill patients(n=1372)

Nutrition delivery over the first 7 ICU days

Day-60mortality did not differ significantly: standard care 22.8% vs 21.5% for early PN

Outcome benefits for the early PN-group

- \triangleright Need for mechanical ventilation \lor (-0.47 days per 10 pat-ICU days; p=0.01)
- ➤ Quality of life RAND-36 health status score: better maintenance of muscle mass

CRITICAL CARE Early high protein intake (≥1.2 g/kg/d on day4)

associated with \mortality & energy overfeeding with \mortality in non-septic mechanically ventilated critically ill patients

Hospital mortality: patients per protein intake group & all non-septic, non-overfed patients per protein intake group

In non-septic, non-overfed critically ill patients (n = 419)

=> early high protein intake
was associated with ↓mortality

=> early energy overfeeding
(>110% of measured EE)
over the first 4 days of ICU stay
with ↑mortality

Clinical outcomes related to protein delivery in a critically ill population

A multicenter, multinational observation study

Odds of mortality by protein and energy intake in ICU patients (4 days; 12 days) 1.2 0.8 sppo Protein Intake □ Energy Intake 0.2 4 days 12 days

80% of protein target (mean 1.0 g/kg/d) + ↑ energy intake compared to protein target <80% (mean 0.5 g/kg/d)

Better Survival & Functional Outcome!

Protein Intake, Nutritional Status & Outcomes in ICU Survivors

A Single Center Cohort Study

Weijs PJ et al.; J.Clin.Med. 2019:8;43

Clinical Nutrition

journal homepage: http://www.elsevier.com/locate/clnu

Original article

Timing of PROTein INtake and clinical outcomes of adult critically ill patients on prolonged mechanical VENTilation: The PROTINVENT retrospective study

W.A.C. (Kristine) Koekkoek ^{a, 1}, C.H. (Coralien) van Setten ^{a, 1}, Laura E. Olthof ^a, J.C.N. (Hans) Kars ^b, Arthur R.H. van Zanten ^{a, *}

Design: retrospective observational study (2011-2015)

Method: ICU mechanically ventilated patients for at least 7 days

3 protein intake categories: 1) < 0.8 g/kg/day

2) 0.8 -1.2 g/kg/day

3) >1.2 g/kg/day

Endpoint: 6 month mortality

The PROTINVENT retrospective study: 6 month survival

Observational studies

- > Time dependence of the protein dose
- Protein ≥1,2 g/kg/d => mortality ↓ after D4-6 but: increase starting <0.8 g/kg on D1</p>

- \triangleright Energy input \cong 80% of the REE during this period
- Septic patients: ↓ protein dose in the early phase but ↑↑↑ protein dose in the recovery phase

Achieving protein targets without energy overfeeding in critically ill patients: A prospective feasibility study

Design: prospective feasibility study

Methods: 20 mechanically ventilated non septic patients

- -> High protein-to-energy ratio nutrition (first 4 ICU days)
 EN formula: protein-to-energy ratio 82g/1000 kcal (1000 ml)
- -> Nutritional prescription was 90% of measured EE

Primary endpoint:

Patients (%) with protein target of 1.2 g/kg ideal BW on day 4

Other endpoints:

- comparison of nutritional intake to matched historic controls
- plasma amino acid concentrations
- gastro-intestinal tolerance and plasma urea concentrations

Achieving protein targets without energy overfeeding in critically ill patients: A prospective feasibility study

- Study patients (n=20)
- Control patients (n=23)

Results:

Protein target of 1.2 g/kg IBW on day 4: 19 patients 95% vs 65% in historic controls (p=0.024)

Mean plasma concentrations of all essential amino acids increased significantly from baseline to day 4

Predefined gastro-intestinal tolerance was good

Limitations

- Small number; no randomization
- Only 4 days use (tolerability during longer use?)

Looijaard W. et al., Clin Nutr 2018 in press

Evidences from Clinical Studies

Protein dosage: 18 Randomized Controlled Trials

			Patienten	Dauer		verglichene AS/Protein Dosis		
Jahr	Autor	Patienten	(N)	(Tage)	Applikation	(g/kg/Tag)		(g/kg/Tag)
1980	Alexander	Kinder mit Verbennungen	18	42	oral	3,9	vs.	3,2
1982	Smith	Gastroent. chirurgische Patienten	30	14	i.v.	2,3	vs.	1,7
1983	Serog	Verbrennungen	24	12	enteral	4,0	vs.	2,1
1983	Shaw	Mangelernährte Patienten	10	16	i.v.	2,3	vs.	1,1
1985	Clifton	Kopfverletzungen	20	7	enteral	2,6	vs.	1,5
1985	Twyman	Kopfverletzungen	21	10	enteral	2,2	vs.	1,5
1987	Greig	Septische Patienten	9	6	i.v.	1,2	VS.	2,3
1989	Rees	EE bedürftige Patienten	118	≥5	enteral	106-83 g/d	vs.	71 g/d
1990	Larsson	Verbrennungen/Polytrauma	39	8	i.v.	1,9-0,6	vs.	0,0
1991	Pitkänen	Sepsis/Polytrauma	50	2	i.v.	1,5	vs.	0,6
1993	van der Heijden	Kritische Kranke, mechanisch beatmet	15	5	i.v.	1,8	vs.	1,2
2003	Scheinkestel	Kritisch Kranke mit kont. Hämofiltration	50	6	i.v.	1,5-2,5	VS.	2,0
2007	Singer	Kritisch Kranke mit noNV*	14	4	i.v.	150 g/d	vs.	75 g/d
2013	Rugeles	Kritisch Kranke	80	≥4	i.v.	1,4	VS.	0,8
2016	Ferrie	Kritisch Kranke	119	10	i.v.	1,1	vs.	0,9

> 15 / 18 studies (83%) better results with higher protein dosage

More effective protein dosage

≥ 1.3 g/kg/day - 14 studies (93%)

≥ 1.5 g/kg/day - 11 studies (73%)

Primary outcome Nitrogen balance!

Randomized controlled trials

- No evidence for optimal protein dosage
- Nitrogen balance = outcome parameter
- Urgent need of new studies with relevant outcome parameters!
 One size doesn't fit all.

- The optimal protein dose for all patients will not exist => individual protein loss!
- New studies should include patient groups with defined protein loss.
- Kidney function appears to have a major influence on the protein effect.

Route, early or energy? ... Protein improves protein balance in critically ill patients

Tailoring Metabolic & Nutrition Therapy in ICU to individual patient's needs

Lean Body Mass (LBM) assessment

EXERCISE & Nutrition Therapy

Measuring and monitoring lean body mass in critical illness

Wilhelmus G.P.M. Looijaard^{a,b,c}, Jeroen Molinger^{d,e}, and Peter J.M. Weijs^{a,b,f,g}

KEY POINTS

- CT-scan analysis
- Musculoskeletal ultrasound
- Bioelectrical impedance analysis (BIA)
 - => tools to measure & monitor lean body mass

- => screening and identifying patients at risk
- Musculoskeletal US and BIA
 - => monitoring/ follow-up measurements

CT-scan at the level of the 3rd lumbar vertebra (L3)

Muscle

Adipose tissue sc

Adipose tissue visc.

Adipose tissue intermusc

Early, goal-directed mobilisation in the surgical intensive care unit: a randomised controlled trial

Stefan J Schaller, Matthew Anstey, Manfred Blobner, Thomas Edrich, Stephanie D Grabitz, Ilse Gradwohl-Matis, Markus Heim, Timothy Houle, Tobias Kurth, Nicola Latronico, Jarone Lee, Matthew J Meyer, Thomas Peponis, Daniel Talmor, George C Velmahos, Karen Waak, J Matthias Walz, Ross Zafonte, Matthias Eikermann, for the International Early SOMS-quided Mobilization Research Initiative*

- Multicentre, international RCT (2011-2015)
- 200 patients to receive standard treatment (control; n=96) or intervention (n=104)
 - => Early, goal-directed mobilisation
- 3 month follow -up

Early, goal-directed mobilisation

- -> improved patient mobilisation throughout SICU admission
- -> shortened patient length of stay in the SICU
- -> improved patients' functional mobility at hospital discharge

Effective in preventing anabolic resistance!

Nutrition risk assessment

- ICU specific tool
- Identify highest risk patients

ICU nutritional plan priorities

Amount of nutrition

- Use indirect calorimetry
- · Avoid under- and overfeeding

Route of nutrition

- Early EN whenever possible
- SPN when EN fails to meet energy needs (risk patients)

Benefit > Risk

Monitoring

- Daily reassessment & adjustments
- Laboratory data, clinical status, fluid status

Nutritional components

- Energy (balanced fat & CHO)
- Protein 1.3g/kg/d
- Micronutrient, vitamins

Conclusions

UNIVERSITÉ
DE GENÈVE
FACULTÉ DE MÉDECINE

- Malnutrition & protein deficit are frequent in ICU patients & worsen outcome
- Early EN (first 24h)
- Avoid under- & overfeeding!
- Indirect calorimetry for energy assessment
- Stepwise advance of protein delivery < 0.8g/kg/d during acute phase (Day 1) ↑↑ 1.3 g/kg from Day 4-6 (ESPEN 2018)
- Cave! Septic patient
- New solutions (↑ protein / ↓ calories)
- Lean body mass assessment (CT/US/BIA)=> best basis for protein dosage
- Don't forget all other rehabilitation tools & therapies !!!

Thank you for your attention

Hippocrates 400 BC

« In all maladies, those who are well nourished do best. It is bad to be very thin and wasted. »

